I Del 1 så jeg på den delen av det infrarøde spektert til CO2 som er viktig for drivhuseffekten – dvs. i hovedsak bøyemoden. I Del 2 så jeg litt på konsekvenser for transmisjon av stråling i atmosfæren.
I denne delen ser jeg på hele spekteret til CO2, dvs. også de delene som er av liten betydning for drivhuseffekten. Vi ser på CO2‘s svake absorpsjon i «det atmosfæriske vindu»; disse linjene er viktig for en teknisk anvendelse – CO2-laseren, og vi ser på frekvensområdet hvor OCO-2 – satellittbasert måling av CO2-nivået – arbeider.
Oversikt
Databasen HITRAN inneholder i alt 173024 spektrallinjer fra 158.301811 cm-1 til 14075.298241 cm-1. (Det tallet inkluderer bare isotopene det er mest av, 12C og 16O; tar man med alle kombinasjoner av isotoper er tallet 559874.)
Figur 1 viser en oversikt – vi ser at det er tre områder som har spesielt sterke linjer. Lengst til venstre er bøyemoden, som vi så på i del 1. I midten er den sterkeste, asymmetrisk strekk, og til høyre en kombinasjon av symmetrisk og asymmetrisk strekk. Øvrige linjer ligger i dette plottet helt nede på y-aksen.
Man kan merke seg at området fra 1199.6 cm-1 til 1420.8 cm-1 er helt uten spektral-linjer (fra del 1 husker man at den symmetriske moden har energi rundt 1340 cm-1)
Figur 2 viser det samme, men med logaritmisk y-akse, hvor de svake linjene kommer klarere fram.
Asymmetrisk strekk
Av figur 1 og 2 ser vi at dette er den mest intense moden – omtrent 10 ganger sterkere enn bøyemoden. Den er likevel av beskjeden betydning for drivhuseffekten på jorden, siden den er utenfor varmespekteret (se figur 2 i del 1). Se Figur 3 i del 1 for illustrasjon av vibrasjons-modene.
Figur 3 viser spektralområdet rundt 2350 cm-1, dvs. asymmetrisk strekk mode. Én mode dominerer – det er overgang mellom vibrasjons-grunntilstand og ett kvant i asymmetrisk strekk, men vi ser også en rekke svakere linjer.
Figur 4 viser hovedmoden, med P- og R-gren i ulik farge. Merk at Q-grenen er fraværende – dette skyldes at asymmetrisk strekk ikke har noen dreieimpuls, og fotonet må dermed få sitt spinn fra endring i rotasjons-nivået til CO2.
Figur 5 viser den nest sterkeste moden. Den skyldes at CO2-molekyler som har ett kvant i bøyemode i tillegg får et kvant i asymmetrisk strekk. Her ser man en svak Q-gren i tillegg til P- og R-grenene.
Figur 7 viser de tre sterkeste modene fra Figur 6 i hver sin farge. De oransje og blå punktene er Fermiresonanser av 2 kvanter i bøy og en kvant i symmetrisk mode, som eksiteres videre med ett kvant i asymmetrisk strekk. Man ser at Q-grenene mangler, av samme grunn som for fundamental asymmetrisk strekk.
Den grønne linjen er to kvanter i bøyemoden, med dreieimpuls 2, som eksiteres videre med ett kvant i asymmetrisk strekk. Her er Q-grenen tillatt, men svak. Legg merke til at det er dobbelt så mange punkter i den grønne – dette skyldes at alle rotasjonskvantetall er tillatt for denne, men bare like kvantetall er tillatt i slutt-tilstanden for de to andre.
CO2s absorpsjon i «det atmosfæriske vindu»
«Det atmosfæriske vindu» er en betegnelse på området omtrent 800-1200 cm-1 (omtrent 8 µm til 12 µm bølgelengde) hvor en normal jordisk atmosfære har liten absorpsjon – dvs at stråling fra overflaten har stor sjanse for å nå verdensrommet.
CO2 har noen svake linjer i området, som vist i Figur 8.
Figur 9 viser transmisjon gjennom en 10000 m tykk atmosfære med 400 ppm CO2, trykk 1 bar og temperatur 0 °C, beregnet med HAPI. Dette svarer omtrent til rett antall molekyler i en kolonne i vår atmosfære, men trykk og temperatur-profilene er ulike. Spesielt er temperatur viktig, siden utgangspunktet for absorpsjonen er en eksitert tilstand, hvor populasjonen øker med økende temperatur. Dette betyr at figur 9 viser mindre transmisjon enn det som skjer i atmosfæren.
OCO-2
Orbiting Carbon Observatory 2 måler CO2-nivået ved registrere hvordan sollys reflektert fra overflaten absorberes av CO2. Dette skjer ved å måle på to frekvenser, ca 4850 cm-1 (bølgelengde 2.06 µm) og ca 6220 cm-1 (ca 1.61 µm). I tillegg måles oksygen’s A-bånd på ca 13100 cm-1 (0.765 µm) for kalibrering.
Figur 10 viser en oversikt over CO2‘s absorpsjon i frekvensområdet 4000-7500 cm-1, mens figur 11 og 12 viser de to aktuelle enkeltmodene.
Figur 13 viser transmisjon gjennom en 10000 m tykk atmosfære med 400 ppm CO2, 1 bar trykk og temperatur 0 °C.
Det finnes to tilstander der spinnene peker i motsatt retning, den laveste kalles singlett oksygen. Begge de to singlett-tilstandene gir opphav til absorpsjonslinjer idet oksygen går fra grunntilstanden og opp. Som for CO2 påvirkes linjene av rotasjon, men også av vibrasjon.
Figur 14 viser i blått overganger knyttet til den laveste singlett-tilstanden, og i gult de som er knyttet til den øverste. De sterkeste linjene, ved knapt 8000 cm-1 og rundt 13000 cm-1 er overganger uten endring i vibrasjon, mens gruppene på hver side innebærer overganger med samtidig endring i vibrasjon. Internt i gruppene er det struktur knyttet til oksygens rotasjons-nivåer, samt overganger med eksiterte vibrasjonstilstander som ikke endrer seg.
Den sterkeste linjen, ved ca 13000 cm-1 benevnes for oksygens A-bånd, og er den OCO-2 måler.